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the electrostatic modes in the denser regions are of negligible influence on the physical
processes under study. To this goal, we have developed the new two-dimensional elec-
tromagnetic code ELIXIRS (standing for ELectromagnetic Implicit X-dimensional Iterative
implicit scheme Relativistic Solver) based on the relativistic extension of the so-called Direct Implicit
Laser—plasma interaction Method [D. Hewett, A.B. Langdon, Electromagnetic direct implicit plasma simulation,
Relativistic plasma J. Comput. Phys. 72 (1987) 121-155]. Dissipation-free propagation of light waves into
vacuum is achieved by an adjustable-damping electromagnetic solver. In the high-
density case where the Debye length is not resolved, satisfactory energy conservation
is ensured by the use of high-order weight factors. In this paper, we first derive the
electromagnetic direct implicit method as a simplified Newton scheme. Its linear prop-
erties are then investigated through numerically solving the relation dispersions
obtained for both light and plasma waves, accounting for finite space and time steps.
Finally, our code is successfully benchmarked against explicit particle-in-cell simulations
for two kinds of physical problems: plasma expansion into vacuum and relativistic
laser-plasma interaction. In both cases, we will demonstrate the robustness of the
implicit solver for crude discretizations, as well as the gains in efficiency which can
be realized over standard explicit simulations.
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1. Introduction

Particle-in-cell (PIC) codes have become widely used plasma simulation tools owing to their ability to mimic real plas-
ma behavior. Yet the standard PIC algorithm employs an explicit time-differencing, and hence suffers from strict stability
constraints on the time step, which needs to resolve the highest-frequency modes of the system [1]. Furthermore, the mesh
size must be comparable to the Debye length / in order to prevent the finite-grid instability [1]. As a consequence, explicit
PIC codes may find it difficult to cope with the large spatial and temporal scales associated with a number of physical sce-
narios, thus requiring massively parallel computing facilities [2]. Several alternatives have been developed over the past
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decades to relax these constraints so that the choice of the space and time steps can be dictated by physical accuracy rather
than stability conditions. The simplest way to do so is to suppress high-frequency processes within the mathematical
model itself. Codes based on the Darwin-field approximation [3,4], gyrokinetic equations [5] or hybrid particle-fluid models
[6-10] rely precisely on such an approach. The shortcoming inherent in these codes is the somewhat uncertain domain of
validity of their basic assumptions. A second, more involved numerically, possibility retains a fully kinetic and electromag-
netic description by using an implicit scheme for the entire Vlasov-Maxwell set of equations. This is the approach dealt
with in this work.

The main feature, and difficulty, of a fully implicit PIC scheme is the prediction of the future particles’ charge and current
densities as functions of the future electromagnetic fields. Two main techniques have been designed to this goal. The first
one to be published, the so-called moment method, makes use of the fluid equations to predict future source terms
[11-16]. and has been recently extended to the relativistic regime [17]. The present article will focus on the alternate
approach, referred to as the direct implicit method, which is based on a direct linearization of the Lorentz equations
[18-21]. Most implementations of the direct implicit method start with the so-called D; discretization of the Lorentz
equation, first presented in Ref. [22]. The relativistic formulation, originally derived in Ref. [23], was implemented, albeit
in a simplified form, in the LSP code [24-28].

The direct implicit method proceeds as follows. First, particles’ momenta and positions are advanced to an intermediate
time level using known fields, yielding predicted charge and current densities. Second, by linearizing the latter quantities
around the predicted momenta and positions, we can express correction terms as functions of the future fields and thus
derive an implicit wave equation. Once this equation is solved, the particles’ quantities are updated. Here we will show that
the direct method can be derived as a simplified Newton scheme.

Our main motivation is the simulation of the interaction of an ultra-intense laser pulse with solid-density plasma slabs.
The energetic particle beams originating from this interaction stir great interest in many fields spanning inertial confinement
fusion [29,26,30-33], high energy density physics [34-37], nuclear physics [38,39] or medical physics [40]. For the high plas-
ma densities considered, the electron plasma frequency w, largely exceeds the laser frequency. Using an explicit PIC code,
the space and time steps should resolve the high-frequency electron plasma modes of the plasma bulk. However, these
modes are of no interest for the problem since they do not affect the laser-plasma interaction nor other potentially impor-
tant related processes as the subsequent, fast electron-driven ion expansion. By contrast, resorting to an implicit scheme
would allow a significantly increased time step, that is, determined only by the need to resolve the incoming laser wave.
In this respect, one should realize that the strong wave damping inherent with implicit methods may be harmful in the con-
text of laser-plasma interaction, for which light waves have to travel over many wavelengths. This prompted us to develop
an electromagnetic solver with adjustable damping, based on a generalization of the scheme initially proposed by Friedman
[41] for the Lorentz equation. We will demonstrate that our adjustable damping scheme tolerates abrupt spatial jumps in the
controlling parameter. Our code therefore allows for dissipation-free laser propagation into vacuum, along with strong
damping of undesirable plasma waves into the densest part of the target.

Computational efficiency is a major incentive for implementing an implicit method, but the ability of the latter to handle
large time steps (i.e., wpAt > 2 and v;At/Ax ~ 0.1 — 1), through which this very efficiency is achieved, also permits to
reduce, or even suppress, the aliasing instability responsible for artificial heating in explicit simulations in case of crude
spatial discretizations (Ax/ip > 1) [1]. Yet, the damping associated with the implicit scheme is known to cause nonphysical
cooling which may prove detrimental for some applications [1,20,21]. Keeping it at an acceptable level can be achieved, as
will be shown, by increasing the order of the weight functions, which, by weakening the aliasing instability [42,43], allows to
limit the level of damping required to achieve satisfactory energy conservation.

The paper is organized as follows. In Section 2, we recall the basic principles of the PIC technique, give the implicit
time-discretized equations to solve, and derive within a simplified Newton formalism the relativistic direct implicit
method. In Section 3, we outline the numerical resolution of the wave equation as implemented in our newly developed,
2Dx-3Dv code ELIXIRS (ELectromagnetic Implicit X-dimensional Iterative Relativistic Solver). The introduction of implicit
injecting/outgoing boundary conditions for the electromagnetic field is also discussed. Section 4 is devoted to the linear
properties of the direct implicit method through the resolution of the electromagnetic and electrostatic dispersion rela-
tions. The effects of finite space and time steps, adjustable damping and high-order weight factors will be accounted for.
Finally, in Section 5, our code is benchmarked against explicit simulations for two kinds of physical problems: the
expansion of a plasma slab in vacuum, and the interaction of an ultra-intense laser pulse with an overcritical plasma
target. The sensitivity of the simulation results to the damping parameter and the number of macroparticules will be
addressed.

2. The relativistic direct implicit method as a simplified Newton scheme

In contrast to Ref. [23], we present here a derivation of the electromagnetic direct implicit method for the relativistic case
within a Newton iterative scheme and a weak formulation of Maxwell’s equations. Note that a similar iterative algorithm
was originally proposed in the non-relativistic electrostatic case in Ref. [19]. Anticipating our need of a dissipation-free prop-
agation of light waves inside the vacuum region of the simulation domain, we introduce a generalization of the adjustable
damping scheme proposed and used in the electrostatic regime by Friedman [41].
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2.1. Basic equations

Consider Maxwell’s equations
OB

VxE=- i (1)
1 0E
VxB= ,uo_|+c2 5% (2)
and the collisionless Vlasov equation for the distribution function f;(x,u, t) of the sth particle species
ofs  wof ofs
G E+2«B). %o 3
8t+y6’x+m5< +/ >8u 3)

Here g, and m; are the charge and the rest mass of the sth particle species, respectively. u denotes the relativistic momentum
normalized by m. The relativistic factor then writes 7 = (1 + u2/c?)"/2. The particle method consists in describing the distri-
bution function f; as an ensemble of macro-particles in the form

fi(x,u,t) ZSX Xp(£))o(u —Up(1)), (4)

where S is the shape function [1], N, the total number of particles of the sth species, and § the Dirac distribution. The rela-
tivistic motion of each macro-particle obeys the following equations:

dX(t) Ut
—a VO =0 (5)
= L.+ ) < BX(0.1 . ©

where we have dropped the particle index p. We now make use of the implicit scheme with adjustable damping proposed by
Friedman [41] for an electrostatic problem, which generalizes the so-called D,-scheme of Langdon et al. [18-20,23]. The
equations of motion are discretised as

Xni1 = Xp + AtU””/Z (7)
Vn+1/2
At = At (U, +U,
Unii2 = Un12 + 5 @nit +an1) + %37 (M> x By(Xn), (8)
ms In
- 0 0\ -
a1 = jfan + (1 - %) a2, (9)
—_— O 0 -
ans = (1 - E)an +Za,, (10)
where the index n denotes the time step index, 6; is the damping parameter chosen for the pusher, and we have defined
%:%m, (1)
12
1 At ENE

Vo = {1 +C7 |:Un—]/2 +Z(an+1 +an—1):| } s (12)

12

U2
Vo2 = (1 +HC;2]/2> . (13)
Friedman’s scheme can be readily applied to Maxwell’s equations, which yields
At,
Ep1 = En + CAtV x B2 — E—OJn+1/27 (14)
At =
Bui12 =By - TV X <En+1 + En—l), (15)
At

Bn:Bn—1/277VXEn7 (16)
= 6 0.\ —
En—] = TmEn + <1 _7m>En—27 (17)

_ 0 0, —
E. = <1 —7m>En+7mEn,2, (18)
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where j denotes the current density, and 0,, is the electromagnetic damping parameter. We could formally use distinct val-
ues for 0, and 6y, but in this paper we restrict our analysis to 6,, = 6;. The value 6; = 1 corresponds to the D; scheme [20],
whereas, as will be shown, 6y = 0 yields a centered undamped scheme.

Two adjustable damping Maxwell’s schemes were previously proposed. Friedman introduced an explicit adjustable-
damping electromagnetic solver in the last section of Ref. [41]. Earlier, Langdon and Barnes [44] had proposed a blend of
D; and leapfrog schemes, which consisted of substituting the electric field part of Eq. (15) by oE, + (1 — «)E, with
E, = (E,i + E;41)/2 and o € [0, 1]. In their undamped form, both of these schemes [41,44] reduce to the leapfrog scheme,
and are therefore subject to some Courant constraint. This contrasts with our Courant condition-free fully implicit scheme
(14)-(18).

As will be demonstrated in Section 4, this scheme allows, via the parameter 6y, a flexible control of the damping of the
high-frequency (electrostatic and electromagnetic) waves of the system. This property is of major interest for applications
such as laser-plasma interaction involving a traveling electromagnetic wave into vacuum, for which the numerical damping
associated with the standard D; method [20] may prove too severe. The next sections will be devoted to the solution of the
set of Eqs. (7)-(18) within a Newton iterative scheme. We will show that for a proper choice of the initial conditions, this
scheme reduces to the direct implicit method developed in Refs. [20,23].

2.2. Weak formulation of the electric field equation

By replacing Eq. (15) into Eq. (14), one obtains the following wave equation

C2AL? At, ,
En+1+TV><V><En+1+€—OJn+1/2 =Q, (19)

with the (known) source term

2 A 12

Q —E,+ AtV xBy 1) — o VX VX Ep ;. 20
/

For any test function y, we assume the following weak formulation of the current density

/jn+1/2(x)l//(x)dx = Z % /fs.o(x7u)vn+1/2(x7 ) [y (Xny1 (X, 1)) + ¥ (Xn (X, u))]dxdu, (21)

where f;o = f;(x,u,0) is the initial particle distribution function and Vi 12 = Uns1/2/7n1,2-
The problem then consists in finding (En.1, X1, Uny1/2) which solve

g 2A12 . .
[ Enapoax+ S35 [ V¥ x B podxr e [ ptopdx = [ Qoudx (22)

together with Egs. (7)-(13). We employ the Newton method to solve this system: for each quantity of interest Y, we intro-
duce the ansatz

Yk —y® 4 sy k=0,1,... 23
n+o

n+o n+o

where o = (1/2,1) depending on whether Y is centered at full or half time steps. The subscript n + 1 will be hereafter omitted
for clarity. Substituting the above ansatz into Eq. (19) yields

2
/ [ (%) + 0B )]y (x)dx + ngt / V<V x [E(x) + 0E% ()] y(x)dx +§ / %D )y (x)dx = / Q' (X)Y(x)dx.
0. .
(24)
The term involving j**" is calculated with positions X**" and velocities V*+"
/.j(kﬂ)lp(x)dx _ Z % /fs‘o(X, u)v(k) [l//(x(k)) + l//(xn)] dxdu + Z % /fs_o(x,u)év(k) [I/I(X(k)) + l//(Xn)] dxdu
% / Fro(x, WV [V (X¥) - 5X¥ ] dxdu, (25)

To obtain the equation solved for the electric field, we need to express the terms X*, sX® V® and sV% as functions of the
electric field. Before proceeding, let us first define the following quantities
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U(k)z 1/2
y(k) = <] + Cz ) (26)
1 23 1/2
r<k>:{1+c{un 1/2+Z(qu (x<k>)+in,l)} } , (27)
QAL
0%) =5, i BalXo) (28)
2
RX)=—-5I+020-0x1) -1 29
(%) =55 A+0@0-0x1) (29)
1 u® ® u®
(k)y
M(Uc)—))(k)(ly(k)zcz ) (30)
1) ek I gAt (U, 1 +UW (¢ P—— =
N(EPx),ut) = B 1Bz LU ) [+ 5 (B EY XY 4, )| G1)
with I the identity matrix. Straightforward calculations then yield
) AtU'
XY =X+ 7@ .
oX® = ArMsU® | (33)
u®
k
v o (34)
oV = Msu", (35)

Using the above expressions and the Newton ansatz (23) and dropping second order terms, the Lorentz equation becomes
U, 12 = U 15U with

At o, AL- At (U 1 U,
uk — U, 1/2+qs E (x(’))+7a"*1+gsm5 (‘;(k)nl/z x Bn(Xn) (36)
and
w  qA 1 o) sy () ® g, At UV QAL ®) 0y 110 wER) ) sy k)
Ul =3 - | VE (X®)5X® 4 GE® (X* )]+2m o % Ba(Xa) =5 -NET(XT), UR)VER (XT)oX
_ gsnA’ltN(E(k) (X(k)), U<k))5E(k) (X(k)). (37)

Egs. (36) and (37) constitute a generalization to the electromagnetic relativistic regime of the iterative procedure originally
developed in Ref. [19] in the classical electrostatic case. Albeit equation (16) of [19] is now modified due to linearized Lorentz
factors and magnetic rotation, we assume that the condition necessary to neglect VE, derived in Section 3.5.2 of [19], still
holds, that is v;At/Ax < 1. With this hypothesis, the sum of Eqs. (36) and (37) further simplifies as

Ath L+ ROX) [1-N(EY(X®),U)[6EX (X Y).

U® 4 5U% = R(X,))Up 12 + % I+R(X,)] |2, + %E“O XMy | +
S

(38)
The set of Egs. (22)-(38) constitutes the weak formulation of the problem. We will now show how to recover the direct im-
plicit method as a simplified Newton algorithm.

2.2.1. The direct implicit method
The simplest scheme consists in considering only one iteration in the above system and choosing the following initial
values

X =X, 4 5X© = sX
UY =0, U9 =05U 39)
E® =0 OB —EV =E,,;,

where we have introduced the predicted position and momentum f(nﬂ and \~I,l “ computed from the known fields a,_; and
B,. We have

< U
X1 = Xp + At =2 (40)
Vnsj2

~ At
Uni12 = RXo)Uno12 +—

a I+ R(Xn)]an_1, (41)
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with Y10 = yw). The correction terms then write

o =48 [l + RO = N(Up12)Enit (X, (42)
oV = M5U7 (43)
oX = AtMoU, (44)

where we have defined

N(Uy,1/2) = N(O,Upy1)0) =

q;At |:Un 1/2 +Un+1/2 % By (X,)

4m;c? 73

and 7, = I'?. Note that an alternate derivation of the direct method was proposed by Welch et al. [24,25]. Their linearization
of y makes use of a simpler velocity correction V. We have checked that our scheme can reproduce more accurately the
dynamics of an electron in a relativistic electromagnetic field [45].

After substituting the above equations into (25), using X, = X1 — At\~ln+1/2 and replacing the resulting expression into
(24), we obtain

/ Eqp o (X)y(X)dx +

+3 "2360 [ 0,0 Vo206 ) (Ko 6, ) + 9% )| s

At =
o (U + o). (45)

C2 t?

/ V % V x Epuq (X)¥/(X)dX

+ Z g:AL /ﬁ,g(x, w)oV(x, w)y (X1 (X, u))dxdu

At
Z aq / fro(x, 1) [v,m 12 ®0X — 0X® Vo /z]w( pi1)dxdu = / Q' (X)y(x)dx. (46)
From Eq. (21), we identify

52 e ol w Vs w [y Ko O w) X ) = 2 [ )b )i “7)

To reduce the next integral, it is convenient to introduce the weak formulation of the predicted charge density

[ Bexpoax =g, [ otk w (X)) dxdu

Approximating R(X,) ~ R(X,,1), we obtain

qut /fsoovw Xns1(X, u))dxdufZ;nA:EO /P X)(I+ R(x))[I — N(X)|E,1 (X)y(X)dx (48)
Deﬁmng the implicit susceptibility y as
qAL _
=37 ey MO Ran()IL - N3 (x) o)
we have
> qseft /fs.o(x, W)V (X, w)y Xy (X, u))dxdu = /lp(x)x(x)l-:nﬂ(x)dx, 50

We treat the remaining integral by introducing the modified current j;
[ 0dx = 4, [ ok wVoa(x, ) (Ko (x, )

We then have
qSAt

[ Fo%0) Vi1 0X - 0X & Vo] V9 (R

= T [ {00 % MO0+ RO NGB0 by

8ms€p

A v { [J@‘() < 1+ REJI - N(xn} By (x)}wx)dx GV

8mseo Vis1/2(X)
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where use has been made of the identity U x U ® U = 0. We are then led to define the tensor { as

Y L A b
00 =56, X 5,
0 57 Ms V12

x I+ R(X)][I — N(x)]. (52)

There follows

qSAt

/st Vn+1/2 Q00X —-0X® V,H]/z)Vl//dxdu = —At/ V x CEIHI) (53)

Eq. (46) supplemented by Eqgs. (47), (50) and (53) should be satisfied for any test function . As a result, we have to solve the
local field equation

C2AL?

En+1 +— 2

V % V x Eniq + fEnet — AtV x ((Epat) = Q, (54)

where the source term now reads

2 tZ —
VxVxE,_;. (55)

At~ ¢
Q=E,— E_OJ,M/Z + AtV x By_1)5 —

We have thus recovered the relativistic implicit method based on the D; scheme which was presented in Ref. [23], with the
only difference that the source term now involves the time-averaged field E,_;. As first shown in Ref. [19] in the electrostatic
case, it then appears that the direct 1mpllc1t method can be derived as a one-iteration Newton method with the starting
values X© X,M U9 = U,H]/z and E© = 0.

An alternative wave equation has been recently derived in the relativistic regime in the framework of the moment
implicit method [17]. As shown in Appendix A, the major difference between the direct and moment implicit methods stems
from the linearization of the current density.

3. Numerical resolution
3.1. Resolution of the field equation

In this section, we sketch the numerical procedure used to solve Eq. (54) in the case of a 2Dx-3Dv phase space with peri-
odic boundary conditions along the transverse y axis. We have first to evaluate the implicit susceptibilities. These terms are

computed for each macroparticle, yielding y(X;,U,) and {(Xp,U,), before being projected onto the (x,y) grid through the
usual formulas:

Z Zs 1(Xp,Up), (56)
Z ZS )E(Xp, Up).- (57)

We then apply the iterative method of Concus and Golub [46] to solve the elliptic system defined by Eq. (54), which reads in
the present case

E(m+l) +

2 A2 ~
C ﬁt )+ XOE(m+1 — AtV x ( Em+1)) _ Q(m)' (58)

The right-hand side of Eq. (58) is given by
Q™ = Q- (1 - L™ + AV x [(¢ - ")E™], (59)

where m is the iteration index and y° and ¢° denote the y-averaged susceptibilities. The fast convergence of the scheme im-
plies, in principle, slow variations of the field quantities in the y direction, but this has not proved particularly constraining
for the physical situations we have considered.

As is usual in electromagnetic PIC codes, two interleaved meshes are used for the spatial differencing of the grid quan-
tities. The fields are discretized as follows: pi.j#.]z.,i.j’ El,i-jﬂ.]x,i+1/2jv Ex‘i+1/2,)'7 By-l'+1/2-j1.ly.i‘j+l/2 s Ey,i.j+1/2, Bx,i.j+1/2 and sz+1/2,j+1/2‘ The
y and ( are stored at (i,j) except for yi;,(11,021,¢31, Which are located at (i+1/2,j), and y,, {12, {22, (32, located at
(i,j + 1/2). Once space-discretized, the above equations are Fourier transformed along the y direction. Considering N, grid
cells, we obtain N, one-dimensional equations to solve. Considering N grid cells in the x direction, each equation gives a
6N, system of equations. These systems have a band-diagonal structure and are solved by a standard LU technique, using
routines bandec and banbks of the numerical recipes library [47]. Details on spatial discretisations and Fourier transforma-
tions used to solve Eq. (58) are given in Appendix B.
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3.2. Charge correction

Our method to accumulate charge and current densities (Eqs. (21) and (48)) does not satisfy charge conservation, which
results into the violation of Poisson’s equation. This is a common flaw of early electromagnetic PIC codes [1] which may be
corrected by a more sophisticated projection scheme [48,49]. A well-known alternative approach, which will be imple-
mented here, is to correct the electrostatic part of the electric field E,,,; solution of Eq. (54) so that it fulfills Poisson’s equa-
tion [1]. Using normalized quantities, our best statement of Gauss’s law is

V-E.i=Pnr> (60)
where E;_, represents the sought-for electric field. Using p,,; = pni1 — V- (¥E;.;), this can be reformulated as

V- [(1+ 0En 4] = Prit. (61)
Now, taking the divergence of Eq. (54) yields

V(4 Bl =V-Q (62)

with generally V- Q#p,.1. We may first think of introducing a potential y such that Q" = Q — Vy fulfills V- Q" = py,1, but
this correction has been shown to cause spurious effects [20]. A proper correction makes use of the following form [20]

Q=Q-(I+Vy. (63)
There follows

V(1 + VW] =V-Q = P, (64)
which is equivalent to

V(1 + 0V = V- (14 0Ena] = Pnsr, (65)

*

where the only unknown is the scalar field . Eventually, the corrected field E;_,
E; , = E..1 — V. Details on the numerical resolution of Eq. (65) are given in Appendix C.

ensuring Eq. (61) is given by

3.3. Electromagnetic boundary conditions

In this section we describe the implementation of injecting/outgoing boundary conditions on both sides of the simulation
box. Incident and scattered electromagnetic waves are assumed linearly polarized and depending on the phase term
k - x — wt only. Waves polarized in the (x,y) plane then verify

Ey' = BJ cos 0, (66)
E = —B;" cos 0, (67)
where 0; and 0, denote respectively the incident and scattered angles. The total field becomes
tot t i
Ey" = E;m +E’y"C (68)
inc
__ ptot 'y )
= —B;" cos 0, + cos 0, (cos 0; + cos ;). (69)

Discretizing with centered finite differences in space and time gives

1 /i n+1 n n n+1/2 incnr1/2 (€OS 0; + €os 6s)
2 (B iben T Eojna + Eyngi + Epojiaya) = —Bhi 00 08 05 + BT, Tm o m (70)

Using Maxwell-Faraday’s equation, we can express E;B} 11,2 s a function of the field values at inner grid points and previous

time steps. We have

2At 2AAt
1 -1/2
Eyotin =AE i, <H cos 05 — 1) ~ 5y costs (Egj}z i1 — Bl _j) ~4Acos 0B 1%, )
2AAt = = 2AAt = =
+ “Ax cos 0 (53,1}+1/z - E;,O.}H/Z) T Ay cos 0s (Eﬂ,l}zm - EQ,]}Z,}‘)
4A inc,n+1/2
+ o5 7 (cos 0; + cos BS)E;’fifzfjH/z - A(I:‘;JJ-H/2 + E;,0J+1/2) , (71)

where the coefficient A is given by

-1
A= <1 +2% c0505> . (72)
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A similar equation can be established for z-polarized waves, which reads

2At 4B 2BAt (

————1) —=B(E}o; + E51; n-1/2
AXx cos 0 1) B(E;o; +Ez1j) + B

cos 0,
i -
cos O, 123 Axcos 6,

n+1 __ n+1
Eroj = BE < cos 0;

Bl - Bl + aelS (14

). 7

where we have defined the coefficient B as

2At \7!
B= (”Tcos 05> . (74)

Note that the above equations only apply in vacuum. This is realized in practice by imposing boundary conditions on par-
ticles a few grid cells away from the outer boundaries of the computational domain. In practice, we assume specular reflec-
tion, that is, 0, = —0;, which has proven sufficient for the applications under consideration. In practice, since overcritical
plasmas will be considered, we will assume specular reflection, that is, 6; = —6;, which has proven sufficient for the appli-
cations under consideration. Of course, more efficient PML-like algorithms can be introduced in our code [50].

4. Numerical analysis of the adjustable-damping, direct implicit method
4.1. Dispersion relation of electromagnetic waves in vacuum

Our aim here is to quantify the error in phase velocity and the damping associated with electromagnetic waves as func-
tions of the space and time steps. In particular, we will demonstrate the possibility to control the wave damping by adjusting
the parameter 6;.

Combining Maxwell-Ampeére’s (14) and Maxwell-Faraday’s (15) equations and assuming propagation in vacuum yield
the wave equation

2AL? =
Eni = 2B, —Eq 4 —C 5 VXV x (Ent +Enat). (75)
The time-filtered term involves the adjustable damping parameter ¢; (Eq. (17)) and can be expanded as
= 0 07\ 0\2 0 0\? /07\?
En+1 + En—l = En+l +7fEn + <1 - %) En—] + (1 _7f> %En—z + <1 - %) <jf) En—3 + - (76)

In a 2-D geometry, taking the electric field in the form E, = Eq®(x,y)z" with z = exp(—iwAt) and i = v—1, Eq. (76) becomes
_ r 2 b 2 2
Ep +Epq = laocp(x,y){z1 (1 - &> ST I (1 - %) Ugaln Yy (%) %4 }z", (77)

2 2 2 2
where the adjustable damping parameter 6; € [0, 1]. Simplifying the series in the right-hand side of Eq. (77) yields

= [ 0\> 0 ] 0\’ 0 2z
_ -1 Y f 2 Y f n
Ei1+Ei = EO(D(x,y){z (1 —2> Tzt + (1 —2> 5 5, Of}z . (78)

The electromagnetic wave is assumed polarized in the (x,y) plane with a harmonic dependence ®(x,y) = exp[i(k«x + k,¥)].
Substituting Eq. (78) into Eq. (75) and space-differencing the Laplacian, we get after some straightforward algrebra the
following third degree polynomial equation

0\ 0 0\> o | @

2 _9,_ 11— _ i 2 _ f il

2=27-1 H(l 2) +52+z +< 2> 2z—9f} 5 (79)
where we have introduced

2 AR 5 (kAX\ AL . 5 (k,Ay

Q 74{ Ax? sin ( 5 + Ay? sin 5 . (80)
Eq. (79) simplifies as

22+ Q% —z2(4+9f)+z[2+92(1 —ef)+20f] — 0y =0. (81)

Let us first examine the special case 0y = 0. The roots of interest are solutions of
2R+ —4z+ 2+ Q%) =0. (82)

The discriminant A =4 — (2 + ©°)* being always negative, we get the roots z, = (2 +ivV—A)/(2 + Q%), which statisfy
|z,| = |z_| = 1. We have therefore demonstrated the absence of damping when 6; = 0. Fig. 1 plots the normalized phase

velocity v, = ¥2 (where k = 1/k)2( + k;) for different values of cAt/Ax = cAt/Ay. The phase velocity error grows for increasing

ke
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Fig. 1. Phase velocity of the least damped root of Eq. (81) as a function of (k.Ax, k,Ay), for different values of cAt/Ax = cAt/Ay € {0.05,0.66,1.28,1.9,2.5}
(from top to bottom) and 0y = 0. A narrower (kyAx, k,Ay) range is represented on the right.
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Fig. 2. Phase velocity (left) and damping rate JwAt (right) of the least damped root of Eq. (81) as a function of (kcAx, k,Ay), for different values of
cAt/Ax = cAt/Ay € {0.05,0.66,1.28,1.9,2.5} (from top to bottom on the left and bottom to top on the right) and 0; = 1.

14,7 e Moo 10",
0.9 10%4
= -
< 085 510
e 3
0.8 10"+
o Lo7s 10" e Y
b e 03 B 0.
0.1 g2 0;\\6-- 0‘132 01 go 0,3”“"’/(0-131
K, Ax y AY K, AX y &Y

Fig. 3. Same as Fig. 2 but with a narrower (kAx, k,Ay) range.

Ax and At/Ax. A value cAt/Ax > 1, that is, violating the stability constraint of the standard explicit scheme, therefore implies
a moderate spatial step k,Ax < 0.38(cAt/Ax = 1.27) so as to avoid excessive (>5%) phase velocity error, which, in presence of
relativistic particles, may cause unphysical Cerenkov radiation [51].

Let us now address the case of nonzero 6;. Figs. 2 and 3 plot the normalized phase velocity v4/c (left) and damping rate
JwAt (right) of the least damped root of Eq. (81) as functions of (k,Ax, k,Ay) for 0; = 1. Cuts of these two quantities in the
plane k, = 0 are represented in Figs. 4 and 5 respectively. Again the phase velocity error grows for increasing Ax and At/Ax. A
value cAt/Ax > 1, therefore implies a reduced spatial step kyAx < 0.28(cAt/Ax = 1.27) so as to keep phase velocity error be-
low 5%. In this case the damping rate, which also increases with Ax and At/Ax, proves much too strong for applications rely-
ing on the propagation of an electromagnetic wave over several wavelengths. For example, assuming kyAx = 0.2 and
cAt/Ax =1, a typical travel time of 200At requires |3w|At < 2.5 x 10~* for a tolerable wave dissipation (<5%). As seen in
Fig. 5(right), this condition cannot be fulfilled when 6; = 1, which further demonstrates the need for an adjustable-damping
scheme for a proper modeling of laser-plasma interaction.
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Fig. 4. Phase velocity (left) and damping rate JwAt (right) of the least damped root of Eq. (81) as a function of (k.Ax), for different values of
cAt/Ax = cAt/Ay € {0.05,0.66,1.28,1.9,2.5} (from top to bottom on the left and bottom to top on the right) and 60y = 1. Phase velocity without damping
(0r = 0) is represented by dotted-dashed line.
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Fig. 5. Same as Fig. 4 but with a narrower (k,Ax) range.

4.2. Dispersion relation of electrostatic plasma waves

We will now focus on the numerical relation dispersion of the electron plasma fluctuations in the case of a uniform, non-
relativistic Maxwellian plasma with a fixed neutralizing background. For this purpose, we shall adopt the formalism of Lang-
don [52] that accounts for both finite space and time steps, as well as allows for an arbitrary time-differencing scheme of the
Lorentz equation. An infinite number of macroparticles is assumed, yielding a continuous velocity distribution function (ta-
ken in the Maxwellian form). In this framework, as detailed in Appendix D, the present adjustable-damping, direct implicit
algorithm can be easily managed. The relation dispersion yielding the complex frequency w as a function of the wave num-
ber k then reads

- (AX/p)? [sin (kpr/z)r’"”sin(kpr) &

1+ &2(&)]
sin (kax/2)] 2 k,Ax/2 k,Ax Z[ e
(kAX)Z[ik(fo/Z/Z)] =1 g’ =

N (wpAt)? )2 i (k, )z[sin(lc,,Ax/Z)rmzsin(kpr)

in 2 k,Ax/2 k,Ax
(ke [2 8] 5= P/ ’

S(0r) =0, (83)

where m is the order of the shape factor [1]. k, = k — 2np/Ax and w, = w — 27q/At are the aliased wave number and fre-
quency, respectively. Z denotes the plasma dispersion function [53] whose argument is &, = w,/v2k, v, (where v is the
electron thermal velocity). Moreover, we have defined the function S as

+00 ei((u/wp)s(prt)
= /)

with the value $(0) = 1. We have numerically solved Eq. (83) using the nonlinear solver STRSCNE developed in Ref. [54] and
the algorithm of Ref. [55] to compute the Z function. We will restrict the following analysis to systems characterized by a
crude resolution of the Debye length (Ax/ip > 1), as is commonplace in simulations of large-scale, high-density plasmas.
Fig. 6 displays the k-dependence of the complex frequency of the fastest growing (or least damped) mode solution of Eq.
(83) for 6y = 1, wpAt = 2 and various values of Ax/p. For Ax//p = 32 (i.e., v, At/Ax = 0.06), most of the k-spectrum is damped

S(0;) = e—30n /Ax)%s2 (kAx)z(prt)z’ (84)
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Fig. 6. Real frequency (blue) and growth rate (red) vs. kAx of the dominant mode solving Eq. (83) with w,At =2,0; =1 and a linear weight factor
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Table 1
Imaginary frequency 3w/w, (wavenumber kAx) of the dominant mode as a function of the ratio Ax//p and the weight factor order for w,At =2 and 60; = 1.
Ax/ip 143 22.6 32 64
Linear —-0.024 33x103 0.011 0.01
(2.11) (2.42) (2.58) (2.85)
Quadratic —0.04 —-0.015 ~37x103 28x103
(1.96) (2.30) (2.48) (2.70)
Cubic —0.039 -0.018 _86x103 _2x10°*
(1.84) (2.14) (2.36) (2.67)

except for a bounded unstable region located near kAx ~ 2.6 with a maximum growth rate 3w/w, ~ 0.011. This corresponds
to the well-known finite-grid instability [1] commonly afflicting PIC simulations with Ax//p > 1, and responsible for non-
physical field energy growth and plasma heating. This instability originates from the interplay of the aliased wave numbers
in Eq. (83). Note also the nonphysical k-dependence of the real frequency obtained at large w,At : Rw is significantly below
wp at k = 0 and further drops with increasing kAx. As seen in Fig. 6, decreasing Ax//p eventually leads to a complete stabil-
ization of the system along with a displacement of the dominant mode towards low k values. For Ax/ip =4 (ie,
v:At/Ax = 0.5), the least damped mode is thus located at kAx = 0.76 with Jw/w, ~ —0.1. This evolution points to a transi-
tion between spatial step-dominated and time-step-dominated regimes.

The dependence of the characteristics of the dominant mode on the ratio Ax//p > 1 and the weight factor order is sum-
marized in Table 1 for 0y = 1 and w,At = 2. The benefit of a high-order interpolation scheme is clearly evidenced: the system
turns out to be entirely stabilized up to Ax/.p = 32 with a quadratic weight factor, and Ax//p = 64 with a cubic weight fac-
tor. In addition, the wavenumber of the increasingly damped dominant mode is shifted downward.

A connection between the present calculations and previously published simulation results [13,21] is provided by Tables
2 and 3, which display the dependence of the dominant mode on the ratio v;At/Ax = w,At/(Ax//p), as well as on the damp-
ing parameter (the time step being fixed to w,At = 2). An extensive set of implicit electrostatic PIC simulations using the D;
scheme (i.e., 0y = 1) and linear interpolation has indeed revealed that satisfactory energy conservation can be achieved in the
range [13,21]

01<g vt% < 1.
Even though the present stability analysis alone is not expected to account for the complex issue of numerical self-heating
[1,56], the results of Table 2 are found in reasonable agreement with the lower bound of the above heuristic range, as they
indicate a complete stabilization of the system for ;At/Ax 2 0.1 in case of a linear weigth factor and 0; = 1. For lower 0y
values, stabilization is reached for increased »;At/Ax. Moreover, Table 3 shows that the use of a quadratic weight factor per-
mits to suppress the finite-grid instability at reduced »;At/Ax ( 2 0.06 for 6; = 1). Similarly to Fig. 6, a clear transition from
the high-k spatial regime to the low-k temporal regime is evidenced when raising ;At/Ax. As expected, a high-order (m > 1)
weight factor, which enables to filter out high spatial frequencies, proves beneficial only in the high-k, grid-instability regime
(for v:At/Ax < 0.25). Note that we have not considered values v:At/Ax > 1 since, in the present case, this would imply
Ax/ip < 2, a parameter range of little practical interest for the aforementioned applications.

Further insight into the stability properties of the adjustable-damping scheme is given by fixing the ratio v:At/Ax = 0.09
and varying accordingly the space and time steps. Equivalently, within the laser-plasma context which we propose to ad-
dress, this can be achieved by fixing the parameters woAx/c and woAt (where wy is the incident laser frequency) and varying
the plasma density. The resulting data is displayed in Table 4 in the ranges 1.26 < w,At < 8.94 and 14.3 < Ax//p < 101. One

(85)
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Table 2

4793

Imaginary frequency Jw/w, (wave number kAx) of the dominant mode as a function of the ratio »,At/Ax and the damping parameter 6; for w,At =2 and a

linear weight factor.

veAt/Ax 0
0 0.1 0.5 1
0.05 0.0166 0.016 0.0150 0.012
(2.64) (2.64) (2.67) (2.67)
0.0625 0.0192 0.0187 0.0161 0.011
(2.51) (2.51) (2.54) (2.58)
0.1 0.0204 0.0185 0.01 18x10°3
(2.18) (2.18) (2.27) (2.33)
0.25 8 x107* —7.4x107° —-0.04 -0.08
(1.05) (1.11) (1.28) (1.46)
0.5 0 -0.01 —0.0508 -0.105
(0.39) (0.54) (0.63) (0.76)
1 0 —0.0102 —0.0532 —-0.112
(0.14) (0.27) (0.33) (0.39)
Table 3

Imaginary frequency Jw/w, (wave number kAx) of the dominant mode as a function of the ratio v,At/Ax and the damping parameter 0 for

quadratic (n = 2) weight factor.

wpAt =2 and a

v At/ AX oy
0 0.1 0.5 1
0.05 53 x 1073 5x107° 3.5x 1073 1074
(2.54) (2.54) (2.58) (2.61)
0.0625 54x107° 48x1073 1.8x1073 -37x1073
(2.39) (2.39) (2.45) (2.48)
0.1 32x1073 1.1x1073 —8x107 -0.0207
(1.99) (2.02) (2.14) (2.24)
0.25 0 _81x1073 —0.039 —-0.078
(0.81) (1.05) (1.22) (1.4)
0.5 0 _97x10°3 —0.05 —0.103
(0.33) (0.54) (0.64) (0.76)
1 0 -0.01 —0.053 -0.11
(0.14) (0.27) (0.33) (0.39)
Table 4

Imaginary frequency 3w/w), (wave number kAx) of the dominant mode as a function of the space and time steps and the weight factor order, for a fixed ratio

v At/Ax = 0.09 and 6; = 1.

wpAt 1.26 2 2.83 3.46 4 5.66 6.32 8.94
Ax/p 143 226 32 39.1 452 64 71.5 101
Linear ~0.0036 0.0034 0.0048 0.0047 0.0044 0.0036 0.0033 0.0024
(2.09) (2.41) (2.59) (2.67) (2.74) (2.85) (2.87) (2.96)
Quadratic ~0.021 ~0.015 —0.01 —0.0078 —0.0066 -0.0044 ~0.0039 ~0.0026
(1.95) (2.3) (2.5) (2.62) (2.68) (2.82) (2.85) (2.92)
Cubic ~0.022 ~0.019 ~0.015 ~0.013 ~0.011 ~0.0079 ~0.0071 ~0.0051
(1.83) (2.16) (2.36) (2.48) (2.56) (2.7) (2.76) (2.85)

can see that a linear shape factor proves rather inappropriate for most of the parameter range considered. By contrast, com-
plete stabilization is achieved for n > 2 weight factors. It is worth noting that, in terms of laser-plasma parameters, the
rightmost column of Table 4 corresponds to a 2000n., 1 keV plasma (where n, is the critical density at the laser frequency
p) discretized with wpAt = 0.2 and weAx/c = 0.1. In addition to accessing such extreme plasma conditions, employing a

cubic weight factor may give the opportunity to reduce the damping parameter 0;.

5. Numerical applications

5.1. Wave propagation in vacuum

Here, we illustrate the capability of the adjustable damping, implicit scheme implemented in the code ELIXIRS to manage
the propagation of electromagnetic waves in vacuum. Let us consider a plane wave, with normalized vector potential ay = 3



4794 M. Drouin et al./Journal of Computational Physics 229 (2010) 4781-4812

Ey at o, t=250 E!’r at o, t=250

] ! |

: |
1 ’ -1 ‘ } |
-2 [JRARE 3 \
gl . ‘ . .. . . . ‘

0 50 100 150 200 0 50 100 150 200
w, x/c a, ¥/c
E at o, =250

| H‘\ “ I

|.l

50 100 150 200
@, x/c

;—'if <

hmmw
“

i
|

'
OLO

Fig. 7. Propagation of a plane wave with 6; = 1 (top, left), 6; = 0 (top, right), and a spatially varying 0; profile according to Eq. (86) (bottom).

and frequency wy, entering the left-hand side of a 1024Ax x 4Ay box, with Ax = 0.2¢/wo, Ay = 0.8¢/mo and At = 0.2w;". The
wave is injected and absorbed using the procedure detailed in Section 3.3. Fig. 7(left) shows the expected monotonous
damping of the incident wave induced when a spatially uniform damping parameter 0; = 1 is applied. After propagating
across the simulation box, the wave amplitude is measured to be 46% of the initial value, which is close to the theoretical
value (49%). The opposite, dissipation-free case corresponding to 6; = 0 is displayed in Fig. 7(right). Finally, with the problem
of laser plasma interaction in mind, we address the case of a spatially varying 0; profile in the form

0 =0, 0<wox/c<512,
0 =1, 51.2 < wox/c < 153.6, (86)
0 =0, 153.6 < wox/c < 204.8.

Fig. 7(center) shows that the discontinuity in 0; does not cause significant spurious effects. This sought-for property is of
major interest for modeling laser-plasma interaction as it allows the laser wave to travel unperturbed in vacuum over sev-
eral wavelengths before reaching the overcritical target, whose numerical stability calls for finite numerical damping. For the
sake of completeness, we have checked that the weak (~0.1% in the present case) reflection arising at the discontinuity sur-
face is consistent with Fresnel’s formula R = (N(1) — N(0))*/(N(1) + N(0))?, where N(0;) = c¢/v,4(0f) is the numerical refrac-
tion index derived in Section 4.1.

5.2. Plasma expansion into vacuum: benchmarking against explicit simulations

As a first test of the implicit Vlasov-Maxwell solver, we simulate the dynamics of a 100n. (where n. is the critical density
corresponding to a fictitious laser with 1 = 27c/mw, wavelength) plasma slab freely expanding into vacuum. The results of the
implicit code ELIXIRS are confronted to refined, explicit simulations performed with the code CALDER [57]. We consider a
60c/w, plasma slab composed of hot (10 keV) electrons with mass m,. and cold (0.5 keV) ions with mass m; = 2000m,. In
the implicit case, the simulation box is 103Ax x 4Ay large, with Ax =2c/w, and Ay = 0.4c/w, (yielding the ratios
Ax//p = 14 and v;At/Ax = 0.14), whereas the explicit simulation handles a 1024Ax x 8Ay box, with Ax = Ay = 0.2c/®,. A
linear weight factor is used in all cases.

Figs. 8-10 plot the time evolution of the ion density profile, the ion phase space and the time evolution of the plasma
kinetic energies, as simulated by the implicit and explicit codes. The implicit damping parameter is chosen to be 0; =1,
whereas the total number of macroparticles N, is 6 x 10* and 6 x 10° in the implicit and explicit cases, respectively. Overall,
albeit roughly resolved and strongly damped (as expected from Table 1), the implicit scheme manages to satisfactorily



=
60,
120w
10°F A7) _ 180a; !
i “‘I\ 260»6‘
< |
'59 l':l
g |
10" i e
i
I3 \
/f \
f I" \
100 p I L. - y ; \ -
0 4 6 8 10 12 16 18 20

M. Drouin et al./Journal of Computational Physics 229 (2010) 4781-4812

wx/c

o
o

log, o(n./n )

-
o—

4 6 8 10 12 14
mox.fc

4795

Fig. 8. Time evolution of the ion density profile: explicit (left) and implicit (right) simulations with Ax =0.2c/w,,At = 0.1w,",N, = 6 x 10° and
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explicit (left) and implicit (right) simulations with Ax =0.2c/w,, At= 0.1w;‘ N, =6 x 10° and
Ax =2c/wp, At = 2(1);1‘N,, =6 x 10*, respectively. The implicit damping parameter is O =1.

Fig. 10. Time evolution of the total electron (red) and ion (green) kinetic energies: explicit (continuous line) and implicit (dashed line) simulations with
Ax = 0.2¢/wp, At = 0.1w," N, = 6 x 10° and Ax = 2c/w,, At = 2w,",N, = 6 x 10, respectively. The implicit damping parameter is 6; = 1. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

capture the finely resolved, explicit results. Yet, the wave damping gives rise to artificial electron cooling, which results into a
weakened ion acceleration as seen in Figs. 9 and 10. More quantitatively, the total energy drops by ~3%, yielding a maximum
ion energy of ~160 keV, as compared to ~220 keV in the explicit case. For the sake of completeness, we have carried out
additional calculations so as to assess the influence of the damping parameter and the number of macroparticules. For each
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Table 5
Total energy variation and ion peak kinetic energy (keV) at 2600w," with N, = 6 x 10,
AE/Eq (%) Ion peak energy (keV)
Explicit +9.3 232
Implicit (0; = 1) -2.8 162
Implicit (6y = 0.5) +3.1 208
Implicit (0; = 0.15) +9 273
Implicit (6; = 0) +19.7 451

Table 6
Total energy variation and ion peak kinetic energy (keV) at 2600w," with N, = 6 x 10°.
AE/Eq (%) Ion peak energy (keV)
Explicit +1 221
Implicit (; = 1) -14 162
Implicit (6; = 0.5) +1.5 198
Implicit (6; = 0.15) +4.5 256
Implicit (0; = 0) +12.4 418

simulation, we have measured the energy variation and the peak ion energy. The data thus obtained is summarized in Tables
5 and 6. The implicit scheme behaves reasonably well up to 6; = 0.15 with an energy variation <10%, comparable or better
than its explicit counterpart for an equal number of macroparticles. Increasing the latter from 6 x 10* to 6 x 10° approxi-
mately halves the energy variation but hardly changes the peak ion energy. The transition from numerical electron cooling
and heating occurs between 6y = 1 and 60y = 0.5. Finally, the undamped (0; = 0) case is subject to a much stronger, if still
limited, electron heating, which translates into a twofold overestimate of the peak ion energy.

5.3. A parametric study of plasma self-heating and cooling

We have carried out a series of simulations of the free evolution of an electron-ion plasma to gauge the potential discrep-
ancy between the idealized linear analysis of Section 4.2 and the actual predictor-corrector numerical scheme. Evidently, the
objective is to gain further insight into the energy conservation properties of the latter and the predictive capability of the
former. These calculations draw upon and extend the work of Ref. [21] to the electromagnetic regime and varying weight
factors. The system consists of a bounded electron-ion plasma with T, = T; = 1 keV and m;/m, = 900, extending over half
a 300Ax x 4Ay simulation box. We have scanned the (Ax/Ap, w,At) parameter space in the range [5,60] x [1,5] using 60
macro-particles per mesh. In practice, after introducing wy, the frequency of a fictitious electromagnetic wave, and n,, the
corresponding critical density, we have set Ax=0.2c/w, and varied the ratio n./n. and the time step so that
Ax/2p € {5,10,20,30,60} and w,yAt € {1,2,5}. The damping parameter is §; = 1 in the whole simulation box. The total sim-
ulation time is kept fixed at 1000w, . For each simulation, we have calculated the relative variation of the total kinetic en-
ergy per laser cycle (woAK/Ko) (where AK is the kinetic variation, Ky the initial kinetic energy). To be complete, we have also
performed electrostatic calculations whereby the electric field is directly computed through the Poisson equation (65).

Table 7
Relative variation (x10°) of the total kinetic energy (AK/Ko) per laser cycle wy': electrostatic case and linear weight factor.
wpAt Ax/ip
5 10 20 30 60
1 3.6 72 500 1400 6300
2 —5.1 17 175 510 2970
5 0.04 -7 10.5 62 440
Table 8
Relative variation (x107°) of the total kinetic energy (AK/Ko) per laser cycle ;! electromagnetic case and linear weight factor.
wpAt AX/ip
5 10 20 30 60
1 3.1 70 440 1110 3800
2 -6.2 14.2 150 400 1730

5 -1.3 -10.7 2.6 40.5 250
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Table 9
Relative variation (x10°) of the total kinetic energy (AK/Ko) per laser cycle wg': electromagnetic case and quadratic weight factor.
wpAt AX/p
5 10 20 30 60
1 -34 10 100 310 1430
2 -6.4 -39 31 110 550
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Fig. 11. Time evolution of the total (blue), ion (red) and electron (green) energies: electrostatic case with linear weight factor. Ax/ip = (5,10, 20,30) from
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version of this article.)

The results are summarized in Tables 7-9. The associated plots of the kinetic energies are shown in Figs. 11-13: each col-
umn corresponds to a specific value of Ax/4p and each line to a specific value of w,At. Note that we have excluded in these
plots the case Ax//p = 60 as it always gives rise to significant numerical heating. We have checked that the plasma kinetic
energy makes up for most of the system energy. Overall, the electrostatic results prove close to the electromagnetic ones.
Satisfactory energy conservation ( < 10’4) is obtained for v;At/Ax = 0.2 and v;At/Ax = 0.1 in the linear and quadratic inter-
polation cases respectively. These lower bound values are in fairly good agreement, albeit slightly higher, with the linear re-
sults of Section 4.2. Larger v,At/Ax ratios eventually lead to plasma cooling due to numerical damping induced by the D,
scheme [44].

5.4. High intensity laser interaction with an overdense plasma slab

5.4.1. Quasi-one-dimensional simulation

Let us now address the problem of the interaction of a relativistic-intensity laser pulse with an overcritical plasma, which
is the prime motivation behind this work.

As a first illustration, we consider the case of a quasi-1D laser-plasma system. The irradiated target consists of a 60c/wqo-
long, 1 keV, 200n, plasma slab preceded by a 18c/wy-long density ramp rising linearly from O to 200n, . The incident elec-
tromagnetic plane wave has a 120w;! constant-intensity profile with a 22! rise time and a normalized amplitude
ao = eEy/mecwy = 3. The implicit simulation employs a 2048Ax x 4Ay grid, with Ax = Ay = 0.1c/@o and At = 0.14wy?, yield-
ing, in terms of plasma parameters, Ax/Ap = 32 and w,At = 2(v;At/Ax = 0.06). The damping parameter in the electromag-
netic solver, as well as in the particle pusher, is set to zero in the vacuum region and the moderately dense plasma region up
to n, = 60n., and to unity in the denser plasma region. Guided by the results of Section 5.3, we make use of a quadratic
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weight factor to reduce the numerical heating. The number of macroparticles per cell N, is varied from 100 to 1300. These
calculations are compared with explicit simulations using the same parameters except for a decreased time step

At = 0.05w;" so as to fulfill the Courant stability condition.



M. Drouin et al./Journal of Computational Physics 229 (2010) 4781-4812 4799

Table 10 compares the values of the total energy variation (calculated after complete reflection of the laser pulse) as ob-
tained in the explicit and implicit cases. Results from implicit simulations with zero damping are also displayed. Overall, ex-
cept for N, = 100, for which case the three schemes behave similarly, the implicit simulations are found to achieve better
energy conservation than their explicit counterparts. The benefit of a strongly damped scheme in the densest region of
the plasma is mostly evidenced for N, = 1300 and 400. The not-so-good performances of the explicit calculations prompted
us to carry out an additional, more refined explicit simulation that can serve more properly as a reference calculation. This
simulation made use of a 4096Ax x 8Ay grid with Ax = Ay = 0.05c/wp and At = 0.03wy;?, as well as of a third-order weight
factor with N, = 650. It yielded a total energy variation of 4%.

The electron (x,p,) phase space (integrated in the y-direction) is displayed in Fig. 14 for both explicit and implicit
schemes. Consistently with the well-known ponderomotive heating mechanism arising at relativistic laser intensities, fast
electrons are accelerated into the target as bunches separated by half the laser wavelength [58]. The explicit simulation pre-
dicts maximum electron momenta about 20% higher than that predicted by the implicit simulation. Also, as a result of the
damping of longitudinal beam-plasma modes, the implicit simulation exhibits a longer-lived separation between the ther-
mal electrons and the fast electrons as the latter propagate through the target. In an actual solid-density configuration,
though, the beam-plasma wave mixing observed in the explicit case should be suppressed by collisions as demonstrated
in Ref. [59]. Yet, these discrepancies do not translate into major differences in the electron energy distribution as shown

Table 10

Quasi-1D laser-plasma interaction: energy variation in the explicit simulations with At = 0.05w;! and the implicit simulations with At = 0.14w;! and varying
0. See text for other simulation parameters.

Explicit (%) Implicit (0; = 0) (%) Implicit (6f = 1 if n > 60nc) (%)
N, = 1300 +14.4 +6 -3
N, = 400 +15.3 +10.5 -1
N, =100 +22 +25.5 +12.7

Inrs B iy iy

=)

140 160 60 80 100 120 140 160 . 6 60 80 100 120

Wyxic Wpxic

Fig. 14. Electron (x,p,) phase space at t = 198w;: explicit simulation with third order weight function and N, = 650 (left) and implicit simulation with
second order, N, = 1300 and max(6y) = 1 (right). See text for other simulation parameters.

g =168 @, =307 ©, 1=505
10} —————— 10° 10°

ik
o
LY
i)

-

o
S
rd

logqo f(v-1)

logyp f(y-1)
~

logio f(v-1)

T D 10° :
05115225 05115225 05115225
v-1 ¥-1 v-1

Fig. 15. Electron energy distribution at different times: explicit simulation (red) and implicit simulation (blue). Energy is normalized by m.c?. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Ion (x, p,) phase space at t = 792w;: explicit simulation with third order weight function and N, = 650 (left) and implicit simulation with second
order, N, = 1300 and max(0y) = 1 (right). See text for other simulation parameters.

at three successive times in Fig. 15. In particular, the slope of the high-energy tail of the spectra is satisfactorily reproduced.
The reduced electron heating gives rise in turn to a ~ 15% slower, space-charge-driven ion acceleration into vacuum as de-
picted by the ion (x,p,) phase spaces of Fig. 16.

5.4.2. Two-dimensional simulations

We now consider a fully two-dimensional laser-plasma system. The electron-ion plasma slab has a peak density of 200n,,
a temperature of 1 keV and a thickness of 6¢/mo. A 12c/mo-long linear density ramp is added in front of the target. The
simulation box consists of a 1024 x 512 grid with Ax = Ay = 0.1c/wo(Ax/4p = 32). The incoming laser pulse has unchanged
parameters except for a 12c/wo, FWHM Gaussian transverse profile. Open and periodic boundary conditions are applied for
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Fig. 17. Time evolution of the electron (red) and ion (green) kinetic energies: explicit simulation with third order weight function and N, = 650 (left) and
implicit simulation with second order, N, = 1300 and max(6y) = 1 (right). See text for other simulation parameters. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Time evolution of the electron (red) and ion (green) kinetic energies: explicit simulation (left), implicit simulations with max(0;) = 0.1 (center) and
max(0s) = 0.5 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Electron (x, p,) phase space at t = 96w;: explicit simulation (left) and implicit simulations with max(6;) = 0.1 (center) and max(6;) = 0.5 (right).

log, ,[f,{x,px)] at w,t = 523

0.09

log, [f,{x,px)] at w,t = 523

40 60

wekic

80

log,o[f(x.px)] at w,t = 523

5 0.0 &
£ _o
0.08 ( e 0.
3
0.03 003
g ‘ g @
@ g — P
0
003 . -0.03
0.08 -2 -0.06}
0 20 40 80 80 0w 0o
mnxtc

Fig. 20. lon (x,p,) phase space at t = 523w;: explicit simulation (left) and implicit simulations with max(6s) = 0.1 (center) and max(6) = 0.5 (right).
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Fig. 21. Electron energy distribution at different times: explicit simulation (red) and implicit simulation with max(6;) = 0.1 (blue). Energy is normalized by
m,c?. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Electron energy distribution at different times: explicit simulation (red) and implicit simulation with max(0y) = 0.5 (blue). Energy is normalized by
mec? (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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the electromagnetic fields along the x- and y-axis, respectively. Due to memory constraints, we use a rather small number of
macroparticles N, = 40. So as to stabilize the system, in addition to using a quadratic weight factor, the time step is signif-
icantly increased as compared to the previous simulations: At =0.3w;!, which corresponds to w,At=4.2 and
veAt/Ax = 0.13. Particles are subject to periodic boundary conditions in the y-direction, and reinjected with their initial tem-
perature in the x-direction. The damping parameter in the electromagnetic solver, as well as in the particle pusher, is set to
zero in the vacuum region and the moderately dense plasma region up to n, = 30n.. Two maximum values of the spatially
varying damping parameter have been tried in the denser plasma region: 6; = 0.1 and 0.5. No significant difference was
found while varying smoothly 6; from 0 to 0.5 in the linear density ramp, compared to abrupt variations. The explicit
simulation of reference makes use of a third-order weight factor with the parameters Ax = Ay = 0.08c/wo, At = 0.05¢;!
and N, = 160. This parallel calculation takes 4.5h on 64 1.6 GHz Itanium 2 processors. By contrast, the (sequential) implicit
simulations take 27 h on a 2.66 GHz Intel Xeon X5355 processor.

log,, [ty -1)n,] at wyt = 67 log,,[(y-1)n,] at ot =86

20

55 . 30 35 40 45 50 55 30 35 0 45 50

Wyx/c x/c
log, ol(y -1)n ] at oyt = 67 log, oty -1)n,] at ot = 86

Fig. 23. Electron kinetic energy density (normalized by m.c?n.) at t = 67w,"' and t = 86w,": explicit simulation (top) and implicit simulations with
max(0y) = 0.1 (center) and max(6;) = 0.5 (bottom).
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The time evolution of the particle kinetic energies is displayed in Figs. 17 and 18. All simulations predict about the same
peak electron energy. Yet, the damped implicit calculations yield a faster decreasing electron energy. The total energy
variation, evaluated over the time interval 215 < wot < 715 (that is, after complete reflection of the laser pulse and before
the fastest ions hit the box boundaries) is —12% and —15% for the 0; = 0.1 and 60; = 0.5 implicit cases, respectively, as com-
pared to +5% in the explicit case.

Despite their crude time resolution and limited number of macroparticles, the implicit calculations manage to reproduce
quite accurately the salient features of the fast electron and ion generation. This is evidenced by the electron and ion (x, p,)
phase spaces of Figs. 19 and 20, as well as by the electron energy spectra of Figs. 21 and 22. As in the previous Section, if to a
lesser extent due to the weaker numerical damping employed here, the implicit simulations somewhat underestimate the
maximum electron energies. A 2-D picture of the fast electron generation is provided by the map of the electron kinetic en-
ergy density shown in Fig. 23. A reasonable agreement is observed between the three cases, each calculation showing the
characteristic 2my-bunched propagation of the fast electrons and their breakout into vacuum.

6. Conclusion

This paper has been devoted to the application of the relativistic direct implicit method to the problem of laser-plasma
interaction. In contrast to closely related works [26-28], our scheme, implemented inside the 2Dx-3Dv code ELIXIRS, allows
for high-order weight functions and adjustable damping of the high-frequency waves. The latter capability, which extends to
electromagnetic waves a method originally designed by Friedman [41] for electrostatic waves, permits to manage within a
unified algorithm the dissipation-free, Courant condition-free propagation of the incident laser pulse through vacuum, while
suppressing the need to resolve the high-frequency collective modes inside the dense plasma region. After having derived
the adjustable-damping, relativistic direct implicit method as a simplified, one-iteration Newton scheme, we have carried
out a thorough analysis of its numerical properties regarding both electromagnetic and electrostatic waves. The latter study,
accounting for the effects of finite At and Ax, the weight factor order and the damping parameter is found to provide useful
hints when compared to the simulation results of the free evolution of a plasma slab. Several numerical tests have been pre-
sented and successfully benchmarked against finely resolved explicit simulations. In particular, we have demonstrated the
ability of the code to capture the main features of the laser-plasma interaction despite cruder space-time resolution. Yet, our
code being still sequential, its increased stability domain remains insufficient to access the large space- and time-scales man-
aged nowadays by massively parallel explicit codes. The parallelization of our code is therefore required and will be the sub-
ject of a future work.
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Appendix A. Comparison with the relativistic moment implicit method

Our objective here is to clarify the differences between the electromagnetic direct and moment implicit methods. To this
goal, we shall adopt the notations recently used by Noguchi et al. [17] to derive the relativistic formulation of the moment
implicit method. The major difference between the direct and moment methods stems from the linearization of the current
density. To show this, let us first introduce the following variables

At
b= (87)
Bs en
Iy =GE() vy + 7 (88)
I+ R[O(Xn)]
n __
oy = 2T, ) (89)
with R corresponds to our Eq. (29) and 0(X,) = I’f—:B’; is the magnetic rotation tensor. We also define
El = olEp", (90)
Vo = (7vh). (91)
Following Ref. [17], the particles’ equations of motion reduce to
A
X2 = x5l (92)

%=%+%%W¢”) (93)
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The current density thus writes

n+1/2 qu va (X — an/z Z a va (X — xn+1/2 )+ qu Z Bs En+0 X”H/Z)S(X xn+1/2). (94)
After linearizing the weight factors around the known quantities, one obtains
X quzvp (X —x1) __quzvp@avpvxsx X;)
RO %Eﬁ*"(xz*“)vxs(x K0S B S )
7% zs:qs ﬁ E10(X11/2) 6 ¥, VxS(X — X1). (95)

The third and fifth terms in the right-hand side of Eq. (95) were discarded in Ref. [17] although they are of first order in time.
Let us then retain them and derive the corresponding expression of the current density. It is convenient to exploit the
relation

U@ V)VxS = Vx- [Suov), (96)

where (V- E)i = > ;0A;i/9x;. Thus, Eq. (95) can be simplified as

P =0 - S [quzsx V| 303 B ESX X

—7VX' {Z qsz [V ®En+()( n+1/2) +]::;+()(xz+1/2) ®VP]S(X—X;)}7 (97)

where
X)=> ¢ VpSX-X]).
s p

Let us now define the following operators

1= Z:qs ZP:S(X — X2V, ® V), (98)
x= Zs:qs; ﬁ}itaZS(X— X), (99)
=34 Z ﬁ;,AtS(Xfxg)Vp X o, (100)
W= zz Zﬁs SX—x0)v, @ o (101)

Using the Definitions (98)-(101) and the property
V. iuev-veu =V x[uxv], (102)

the current density times At can finally be written as

~ 2 A
A2 = A — %vx T+ BT + % Vx x [a-:””(x;)] - % Vx - [WE”“’(x;)] , (103)

where we have approximated EE*”(XZ”/ 3y~ Eg*“(xg). The above equation should be compared to the following one
Atjy.12 = Atiniajz + 7Enin — AtVx x ((Eni1) (104)

obtained within the relativistic direct implicit method. Apart from the fact that y and ¢ assume slightly different forms be-
tween both equations, the latter mostly differ in the sign of the rotational term Vx x ({E,.1) and in the presence of an addi-
tional pressure term Vy - [WE;“’ (xp)] in Eq. (103). These differences stem from the fact that particle quantities are expanded
around distinct positions, namely X,,; for the direct method and x, for the moment method. Nonetheless, the direct and
moment implicit methods appear to be very close formally, provided that all first order terms are retained, in contrast to
the scheme presented in Ref. [17].
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Appendix B. Numerical implementation of the field equation

We detail here the numerical procedure to solve Eq. (58) within a 2D cartesian geometry. The Concus and Golub iterative
method [46] is applied to the three components of Eq. (58). The x-component writes

En+l

ALY [
xi+1/2§ T 2AxAy ( y

2 A2
n+1 n+1 n+1 At n+1 n+1 n+1 11,0 pn+1
Ey.i+1.j+1/2 - Ey.i+1j—1/2 - Ey,i.j+l/2 + Ey,ij—l/Z) - 2Ay2 (Ex,i+1/2.j+1 - 2Ex,i+1/2.j + Ex,i+1/2j—1) + Xi+1/2Ex,i+1/2.j

] 12,0 pn+1 12,0 pn+1 12,0 pn+1 12,0 pn+1 1 13,0 pn+1 1 13,0 gn+1
Tz [Xi Evije + % Eyijae + 4 Eyivroe T Xis Ey.i+1.j+1/2} T34 E; T35 %ia E i

At 1310 st 310 pn+l At T.320p041 32,0 pn+l 320+l 320+l
“ 24y [€i+1/2Ex,i+l/2J+1 - Ci+1/2Ex,i+1/2J—l] ~ 24y [91 Eyiiap +GaE e — G E e — G0 Ey.i+]j—1/2}
At 3305041 2330 pnt1 330+l 330n+1 5
T 4Ay [QM Eiijn + G — G B — G Ez.,i.j—l} = Qxis12j- (105)

The y-component writes

C2AL?

2 A2
1 c*At 1 1 1 +1 1 1 1
E;/l.-:'—jﬂ/z T OAR? ( ;.-:'—HJH/Z - ZE;L'H/z + E;;—l.jﬂﬂ) + 2AxAY ( ;.i+1/2j+1 - 52,11/2#1 - EZ,Jirﬂ/z.j + E:.i—l/zj)
210 ) 230 )
i + 41 +1 +1 220pn+1 i + 1
+ l4 (E:,i—l/lj + Eﬂ,f+1/2J + E;i—l/zjn + Eﬂ.i+1/2J+1) + X E;.T.jﬂ/z +712 (Eg,i,)‘ +EZL'+1)
At 31,0 En+1 En+1 31,0 En+] En+1 At 32,0En+1 32,0En+1
+ IAX GoapExicyey T Eeivi ) — G p(Exizayag + Exicrjagen) | + AX GaEyijne — GO E
At 7330 pnst 41 £330, pntl +1 5
+ AAx [Ciﬂ' (E;Ji;l‘j + E;i+1,j+1) — ¢ (Eg.i—l.j + Eg.i—l.jﬂ)] = Qyij+1/2- (106)

The z-component writes

+1 CzAtz +1 +1 +1 CZAtZ +1 +1 +1 X?’LO 1 +1
- - T - - ! T N+ -
E; — AR (Ez.i+lj —2E; + Ez,i—lj) T 2A2 (Ez,i.jH -2E7 + Ez,ij—l) "‘IT (Ex,i—l/Zj + Ex,i+1/2.j)

32,0

Xi ([ pni 41 3301 AL (210 pri 210 pnil

+ —'2 <Ey.ij—1/2 + Ey‘i,j+1/2> +1 T EG - Ax (€i+1/2Ex,i+1/2J - Cifl/zEx‘i—l/Zj)
At 22,0 En+1 En+1 22,0 En+1 En+1

- 4Ax CiH y,it+1,j-1/2 + yi+1j+1/2 ) — Cifl y,i-1j+1/2 + y,i-1j-1/2

At/ 930pmi1 2230 pn+1 At 110/ it 1 nil i1
(5 E G E ) Ay <Ex,i+1/2J+l +Ei 1250 — Exivipgo1 — Ex,i—l/Z,i—l)

T Ax \Git1 Fzitli T zi-1j 4Ay 6
At At ~
+ AT/ 51_12,0 (Egﬂﬂ/z - E;L?—l/Z) m ;-]3’0 (EQL‘]H - E;L&) = Qgjj- (107)

The right-hand sides of Egs. (105)-(107) are given by

Am 11 10 \pm) 11, 10 120y (5 (m)
Quit1y2j = Quiniyzg = Uivrzg = Xisijp ) Exiii g — p [(Xi.j — i )<Ey.ij+1/2 + Ey.ij—1/2>

12 120 [pm) (m) 13 13,0\ pm)
+(ity — X )<Ey.i+l.j—l/2 + Ey‘i+1,j+1/2>] = (j — % Eij
At /.3 310 \ p(m) 31 310 \ p(m)
+ 2Ay [(5”1/2441 B g"+1/2>E><~i+1/2-j+1 - <Ci+1/2.j—1 - €i+1/2)Ex,i+1/2‘j71]
At 17,3 32,0 p(m) 32 320 pm)
+ [(CiJH/Z —& )Ey‘i.j+1/2 + (Cwuﬂ/z -G )Ey.i+1.j'+1/2
2Ay
32 320\ p(m) 32 32,0\ p(m)
—<€Vij—1/2 -G >Ey,i.j—1/2 - <€i+11—1/2 =it >Ey,i+1j71/2]
At 17,33 33.0) p(m) 33 330\ gm)
+4Ay G =G5 ) Eivrjer + (G — G 2ij+1

*(C?fu—l - C?ji())Egluq - (4’?.1'371 - C?}'O)Eﬁq]v (108)



4806 M. Drouin et al./Journal of Computational Physics 2